
EECS 440 System Design of a Search Engine
Winter 2021

Lecture 12: The constraint solver

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

1

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda

1. Course details.
2. The constraint solver.

2

Agenda

1. Course details.
2. The constraint solver.

3

Midterm
1. Midterm Monday March 8, 3:00 pm to 5:00 pm as promised in the course

description. If you need an alternate time or other accommodations send
mail to eecs440staff@umich.edu.

2. Exam will be online at https://crabster.eecs.umich.edu/ You will need to
login with your Umich ID. Do not open multiple windows and do not use an
incognito window.

3. Format will be 25 short answer questions, e.g., asking you to explain a
concept or why one design approach might be better than another.

4. Open everything except collaboration, including posting questions
anywhere, and attempts to seek out or use previous exams.

5. If you have questions about the exam, post privately on Piazza. We can look
at your exam on Crabster and see it exactly as you see it.

4

mailto:eecs440staff@umich.edu
https://crabster.eecs.umich.edu/

Agenda

1. Course details.
2. The constraint solver.

5

Dictionary Posting list Posting list Posting listPosting list …

Common
Header

Type-specific
data Index Post Post Post Sentinel…

The inverted word index within a chunk.

A posting list

Delta from
previous
post loc

Type-specific
data

An individual post We look up a search word in the dictionary,
which takes us to a posting list. The index lets us
jump to a location in the list without having to
start from the beginning, adding up all the
deltas.

An Index Stream Reader (ISR) is the abstraction
we’ll use for the seeking and reading posts in a
posting list.

Index functions
Index stream readers (ISRs)

first(t) returns the first position at which t occurs.

last(t) returns the last position at which t occurs.

next(t, current) returns the next position where t occurs after the
current position.

prev(t, current) returns the last position where t occurs before the
current position. But slow and usually omitted.

Basic idea to create ISR structures that match the query constraints.
Each ISR can find the next occurrence of whatever it’s looking for.

"apollo moon landing" | (apple banana)

OR ISR

Phrase ISR AND ISR

apollo ISR moon ISR landing ISR apple ISR banana ISR

The ISR structure

Index Stream Reader (ISR)

Finds the next occurrence of the desired token or combination of child
ISRs.

ISRWord Find occurrences of individual words.

ISREndDoc Find occurrences of document ends.

ISROr Find occurrences of any child ISR.

ISRAnd Find occurrences of all child ISRs within a single
document.

ISRPhrase Find occurrences of all child ISRs as a phrase.

ISRContainer Find occurrences of contained ISRs in a single
document not containing any excluded ISRs.

Index Stream Reader (ISR)

Two Basic ISRs to actual posts in the index.

ISRWord Find occurrences of individual words.

ISREndDoc Find occurrences of document ends.

Index Stream Reader (ISR)

Four abstract ISRs that combine sub-ISRs.

ISROr Find occurrences of any child ISR.

ISRAnd Find occurrences of all child ISRs within a single
document.

ISRPhrase Find occurrences of all child ISRs as a phrase.

ISRContainer Find occurrences of contained ISRs in a single
document not containing any excluded ISRs.

typedef size_t Location; // Location 0 is the null location.

typedef union Attributes
{
WordAttributes Word;
DocumentAttributes Document;
};

class Post
{
public:

virtual Location GetStartLocation();
virtual Location GetEndLocation();
virtual Attributes GetAttributes();

};

class Dictionary
{
public:

ISRWord *OpenISRWord(char *word);
ISREndDoc *OpenISREndDoc();
Location GetNumberOfWords();
Location GetNumberOfUniqueWords();
Location GetNumberOfDocuments();

};

class ISR
{
public:

virtual Post *Next();
virtual Post *NextEndDoc();
virtual Post *Seek(Location target);
virtual Location GetStartLocation();
virtual Location GetEndLocation();

};

class ISRWord : public ISR
{
public:

unsigned GetDocumentCount();
unsigned GetNumberOfOccurrences();
virtual Post *GetCurrentPost();

};

class ISREndDoc : public ISRWord
{
public:

unsigned GetDocumentLength();
unsigned GetTitleLength();
unsigned GetUrlLength();

};

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

Consider these posting lists

To read and merge these lists, we need to move from one entry to the next.

We'll do that with an ISR (index stream reader).

The ISR for each token has to be able to report its current location and
attributes, and it needs Next() and Seek() functions.

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick | fox 10 27 87 105 106 513 515 518 520 550 1200

OR'ing streams

An OR ISR simply merges the streams.

No need to pay attention to document boundaries. Each post is in whichever
posting list and whatever document it happens to be.

class ISROr : public ISR
{
public:

ISR **Terms;
unsigned NumberOfTerms;

Location GetStartLocation()
{
return nearestStartLocation;
}

Location GetEndLocation()
{
return nearestEndLocation;
}

Post *Seek(Location target)
{
// Seek all the ISRs to the first occurrence beginning at
// the target location. Return null if there is no match.
// The document is the document containing the nearest term.
}

Post *Next()
{
// Do a next on the nearest term, then return
// the new nearest match.
}

Post *NextDocument()
{
// Seek all the ISRs to the first occurrence just past
// the end of this document.
return Seek(DocumentEnd->GetEndLocation() + 1);
}

private:
unsigned nearestTerm;
// nearStartLocation and nearestEndLocation are
// the start and end of the nearestTerm.
Location nearestStartLocation, nearestEndLocation;

};

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox ?

AND'ing streams

AND'ing of terms should find occurrences of all the terms within a single
document.

Should it return every possible combination, every combination only changing
the nearest ISR or the first match in each matching document?

AND'ing streams

To determine what document a post falls within, we advance a #DocEnd ISR to
the next document end, where we can retrieve information about the
document, including its length.

This tells us the start and end points of the document and whether all the word
ISRs point within the same document.

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox ?

Easier to consider if we show the document boundaries.

AND'ing streams

AND'ing of terms should find occurrences of all the terms within a single
document.

Should it return every possible combination, every combination only changing
the nearest ISR or the first match in each matching document?

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox How many possible combinations?
Can you reach all of them in a single pass, all ISRs only moving
forward?

AND'ing streams

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox How many possible combinations? 6
Can you reach all of them in a single pass, all ISRs only moving
forward? No.

Should it return every possible combination, every combination only changing
the nearest ISR or the first match in each matching document?

AND'ing streams

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox How many possible combinations? 6
Can you reach all of them in a single pass, all ISRs only moving
forward? No.

Should it return every possible combination, every combination only changing
the nearest ISR or the first match in each matching document?

The point of the constraint solver is to find matching pages. Once any match on
the page has been found, it's the ranker's job to figure out what to do next

AND'ing streams

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox How many possible combinations? 6
Can you reach all of them in a single pass, all ISRs only moving
forward? No.

You probably want both:

Next() Advance the nearest ISR and look for the first match.

NextDocument() Seeks all the ISRs past the end of the document then looks
for the first match.

AND'ing streams

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox NextDocument() matches

Next() Advance the nearest ISR and look for the first match.

returns (10 87) (27 87) (105 87) (105 106) (513 515)
(518 515) (518 550) (520 550)

NextDocument() Seeks all the ISRs past the end of the document then looks
for the first match.

returns (10 87) (513 515)

AND'ing streams

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox NextDocument() matches

To look for a new match, your objective is to skip forward through the index as
fast as possible.

If a match is to be made including any of the present set of ISR positions, it
must include whatever post is furthest down the index.

So there's no point in considering posts on the other lists that occur before the
beginning of the document containing that furthest post.

AND'ing streams

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox NextDocument() matches

To look for a match:

1. Advance the #EndDoc ISR to just past the furthest ISR to get the length of
the document.

2. Advance the other ISRs to their first matches starting at the beginning of
the document.

3. If any ISR is past the end of document, you pick the new furthest and
continue searching.

class ISRAnd : public ISR
{
public:

ISR **Terms;
unsigned NumberOfTerms;
Post *Seek(Location target)

{
// 1. Seek all the ISRs to the first occurrence beginning at
// the target location.
// 2. Move the document end ISR to just past the furthest
// word, then calculate the document begin location.
// 3. Seek all the other terms to past the document begin.
// 4. If any term is past the document end, return to
// step 2.
// 5. If any ISR reaches the end, there is no match.
}

Post *Next()
{
return Seek(nearestStartLocation + 1);
}

private:
unsigned nearestTerm, farthestTerm;
Location nearestStartLocation, nearestEndLocation;

};

class ISRAnd : public ISR
{
public:

ISR **Terms;
unsigned NumberOfTerms;
Post *Seek(Location target)

{
// 1. Seek all the ISRs to the first occurrence beginning at
// the target location.
// 2. Move the document end ISR to just past the furthest
// word, then calculate the document begin location.
// 3. Seek all the other terms to past the document begin.
// 4. If any term is past the document end, return to
// step 2.
// 5. If any ISR reaches the end, there is no match.
}

Post *Next()
{
return Seek(nearestStartLocation + 1);
}

private:
unsigned nearestTerm, farthestTerm;
Location nearestStartLocation, nearestEndLocation;

};

Phrase match

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

"quick brown fox" (513 514 515)

Length of the match must equal to sum of the lengths of the terms.

If a match is to be made including any of the present set of ISR positions, it
must include whichever post is furthest down the index.

Terms must be in consecutive locations.

Phrase match

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

"quick brown fox" (513 514 515)

Can phrase matches be overlapping?

Do you need to pay attention to document boundaries?

If it’s not a match, do all the ISRs have to move?

Terms must be in consecutive locations.

Phrase match

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

"quick brown fox" (513 514 515)

Can phrase matches be overlapping? Yes, if beginning and ending terms match.

Do you need to pay attention to document boundaries? No, not if you skip a
location number between documents. All phrase matches will always be within
a single document.

If it’s not a match, do all the ISRs have to move? No, you iterate, trying to move
the nearest to correct position relative to the furthest.

Terms must be in consecutive locations.

Phrase match

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

"quick brown fox" (513 514 515)

So, what are the functions you might want? Probably want both Next() and
NextDocument().

Phrase match

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

"quick brown fox" (513 514 515)

So, what are the functions you might want? Probably want both Next() and
NextDocument().

Phrase match

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

"quick brown fox" (513 514 515)

To look for a match:

1. Pick the furthest ISR.

2. Advance the other ISRs to their first matches starting at exactly where they
should appear to be a matching phrase.

3. If any ISR is past the desired location, pick the new furthest and continue
searching.

class ISRPhrase : public ISR
{
public:

ISR **Terms;
unsigned NumberOfTerms;
Post *Seek(Location target)

{
// 1. Seek all ISRs to the first occurrence beginning at
// the target location.
// 2. Pick the furthest term and attempt to seek all
// the other terms to the first location beginning
// where they should appear relative to the furthest
// term.
// 3. If any term is past the desired location, return
// to step 2.
// 4. If any ISR reaches the end, there is no match.
}

Post *Next()
{
// Finds overlapping phrase matches.
return Seek(nearestStartLocation + 1);
}

};

NOTs

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

brown -fox 790
-fox Not allowed

A NOT matches anywhere the term doesn't appear, which is likely pretty nearly
everywhere.

So we don't allow searches for nots alone and we don't check for exclusions
until we've found an otherwise matching page.

Terms that cannot appear in a matching document.

Container ISRs

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

brown -fox 790
-fox Not allowed

(AND'ing is a special case of a container with no exclusion ISRs.)

ISRs that must match and those that must not within a document.

class ISRContainer : public ISR
{
public:

ISR **Contained,
*Excluded;

ISREndDoc *EndDoc;
unsigned CountContained,

CountExcluded;
Location Next();

Post *Seek(Location target)
{
// 1. Seek all the included ISRs to the first occurrence beginning at
// the target location.
// 2. Move the document end ISR to just past the furthest
// contained ISR, then calculate the document begin location.
// 3. Seek all the other contained terms to past the document begin.
// 4. If any contained erm is past the document end, return to
// step 2.
// 5. If any ISR reaches the end, there is no match.
// 6. Seek all the excluded ISRs to the first occurrence beginning at
// the document begin location.
// 7. If any excluded ISR falls within the document, reset the
// target to one past the end of the document and return to
// step 1.
};

Post *Next()
{
Seek(Contained[nearestContained]->GetStartlocation() + 1);
}

private:
unsigned nearestTerm, farthestTerm;
Location nearestStartLocation, nearestEndLocation;

};

The query language and the ISRs can be recursive

"apollo moon landing" | (apple banana)

OR

Phrase AND

"apollo" "moon" "landing" "apple" "banana"

The parse tree

The query language and the ISRs can be recursive

"apollo moon landing" | (apple banana)

OR ISR

Phrase ISR AND ISR

apollo ISR moon ISR landing ISR apple ISR banana ISR

The ISR structure

OR ISR

Phrase ISR AND ISR

apollo ISR moon ISR landing ISR apple ISR banana ISR

The ISR structure

OR

Phrase AND

"apollo" "moon" "landing" "apple" "banana"

The parse tree

"apollo moon landing" | (apple banana)

The trees are the same.

	EECS 440 System Design of a Search Engine�Winter 2021�Lecture 12: The constraint solver
	Agenda
	Agenda
	Midterm
	Agenda
	Slide Number 6
	Index functions
	Slide Number 8
	Index Stream Reader (ISR)
	Index Stream Reader (ISR)
	Index Stream Reader (ISR)
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43

